Tag Archives: conveyor chain lock

China Good quality Conveyor Drive Roller Chain Sprocket Industrial Transmission Metric Stainless Steel Taper Lock Idler CZPT (DIN/ANSI/JIS Standard or Made to Drawing)

Product Description

Conveyor Drive Roller Chain Sprocket Industrial Transmission Metric Stainless Steel Taper Lock Idler CZPT (DIN/ANSI/JIS Standard or Made to Drawing)
 

Product Description

Click the picture to learn the details of the corresponding sprocket ↓

Finished bore sprocket Idler sprocket Taper lock/ bushed sprocket QD sprocket Plate wheel sprocket
Double pitch sprocket Conveyor sprocket Flat top sprocket Stainless Steel sprocket Plastic sprocket

Standard sprockets
Standard: ANSI, DIN, JINS, ISO, KANA,Standard America

European standard sprockets

American standard sprockets Japan standard sprockets
DIN stock bore sprockets & plateheels ASA stock bore sprockets JIS stock sprockets
DIN finished bore sprockets finished bore sprockets finished bore sprockets
stainless steel sprockets stainless steel sprockets double single sprockets
taper bore sprockets double single sprockets&single type C sprockets double pitch sprockets
cast iron sprockets taper bore sprockets speed-ratio sprockets
platewheels for conveyor chain double pitch sprockets idler sprockets
table top wheels sprockets with split taper bushings table top sprockets
idler sprockets with ball bearing sprockets with QD bushings  
double simplex sprockets    

European standard sprockets

DIN stock bore sprockets & plateheels

03B-1 04B-1 05B-1-2 06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3
28B-1-2-3 32B-1-2-3

03A-1 04A-1 05A-1-2 06A-1-2-3 081A-1 083A-1/084A-1 085A-1 086A-1 08A-1-2-3 10A-1-2-3 12A-1-2-3 16A-1-2-3 20A-1-2-3 24A-1-2-3
28A-1-2-3 32A-1-2-3

DIN finished bore sprockets

06B-1 08B-1 10B-1 12B-1 16B-1 20B-1

stainless steel sprockets

06B-1 08B-1 10B-1 12B-1 16B-1

taper bore sprockets

3/8″×7/32″ 1/2″×5/16″ 5/8″×3/8″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

cast iron sprockets

06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3

platewheels for conveyor chain

20×16mm 30×17.02mm P50 P75 P100

table top wheels

P38.1

idler sprockets with ball bearing

8×1/8″ 3/8″×7/32″ 1/2″×1/8″ 1/2″×3/16″ 1/2″×5/16″ 5/8″×3/8″ 5/8″×3/8″ 5/8″×3/8″ 3/4″×7/16″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

double simplex sprockets

06B-1 08B-1 10B-1 12B-1 16B-1

American standard sprockets

ASA stock bore sprockets

-2 35-3 -2 40-3 50 50-2-50-3 60 60-2 60-3 80-80-2 80-3 100 100-2 100-3 120 120-2 120-3 140 140-2 160 160-2 180 200
200-2 240

finished bore sprockets

stainless steel sprockets

60

double single sprockets&single type Csprockets

taper bore sprockets

35 35-2 -2 50 50-2 60 60-2 80 80-2

double pitch sprockets

2040/2042 2050/2052 2060/2062 2080/2082

sprockets with split taper bushings

40-2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 120 120-2

sprockets with QD bushings

35 35-1 35-2 -2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 100-3

Japan standard sprockets

JIS stock sprockets

140 160

finished bore sprockets

FB25B FB35B FB40B FB50B FB60B FB80B FB100B FB120B

double single sprockets

40SD 50SD 60SD 80SD 100SD

double pitch sprockets

speed-ratio sprockets

C3B9N C3B10N C4B10N C4B11 C4B12 C5B10N C5B11 C5B12N C6B10N C6B11 C6B12

idler sprockets

35BB20H 40BB17H 40BB18H 50BB15H 50BB17H 60BB13H 60BB15H 80BB12H

table top sprockets

P38.1

Custom service OEM / ODM 

We can also customize non-standard sprockets according to your needs, and you can send us the design drawings

1. Material: 1045 Steel / Alloy Steel / Stainless Steel 304 & 316 
2. Pilot bore, finished bore, taper bore and special bore. 
3. Bright surface / high precision / Blacking /Electrophoretic-Coated
4. Advanced heat treatment and surface treatment craft
5. Processing Equipment: Hobbing machine, Slotting machine, CNC lathes and other equipment.

 

Related products

 

Company Profile

HangZhou Ever-power Transmission Co., Ltd. produces gears, sprockets, shafts, clutches, chains, racks, boxes, flanges, couplings, stamping parts, bevel gears, drive axle assemblies, non-drive axle assemblies, universal joints, shift forks, outriggers, shift rods, and bearing seats. The company has advanced production equipment and testing methods, and is careful with gear and rack products, and repeatedly polishing the details of parts, striving for perfection and casting quality. It has been unanimously recognized by many customers.

 Additionally, all our production procedures are in compliance with ISO9001 standards. We also can design and make non-standard products to meet customers’ special requirements. Quality and credit are the bases that make a corporation alive. We will provide best services and high quality products with all sincerity. If you need any information or samples, please contact us and you will have our soon reply.

Our equipments
Our testing equipments
Our certificate

 

FAQ

About HangZhou Ever-power group(HZPT):

Q: Are you trading company or manufacturer ?
A: Our group consists in 3 factories and 2 abroad sales corporations.

Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: How long is your delivery time ? What is your terms of payment ?
A: Generally it is 40-45 days. The time may vary depending on the product and the level of customization. For standard products, the payment is: 30% T/T in advance ,balance before shippment.

Q: What is the exact MOQ or price for your product ?
A: As an OEM company, we can provide and adapt our products to a wide range of needs.Thus, MOQ and price may greatly vary with size, material and further specifications; For instance, costly products or standard products will usually have a lower MOQ. 

Please contact us with all relevant details to get the most accurate quotation.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Nonstandard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Manufacturing Method: Rolling Gear
Toothed Portion Shape: Curved Gear
Material: Cast Steel

drive sprocket

How do I troubleshoot common issues that may arise with drive sprockets?

Drive sprockets, like any other mechanical components, can experience various issues during operation. Understanding and troubleshooting these common problems can help ensure the smooth functioning of the power transmission system. Here are some common issues and their troubleshooting steps:

  • 1. Excessive Wear: If the sprocket shows signs of excessive wear, such as elongated teeth or a shiny appearance, it may lead to poor chain engagement and premature failure. The troubleshooting steps include inspecting the chain for wear, ensuring proper tension, and replacing both the worn sprocket and chain.
  • 2. Chain Skipping or Jumping: Chain skipping or jumping over the sprocket teeth can occur due to misalignment, worn sprocket teeth, or improper tension. Troubleshooting involves checking the alignment of the sprockets and ensuring the chain tension is within the recommended range.
  • 3. Noisy Operation: Unusual noise during operation can be caused by misalignment, loose components, or worn-out sprockets. Inspecting and realigning the sprockets, tightening fasteners, and replacing worn parts can resolve the issue.
  • 4. Corrosion: Corrosion can occur in harsh environments or when exposed to moisture. Regular inspection and proper lubrication can help prevent corrosion. If corrosion is present, replacing the affected sprockets with corrosion-resistant ones is necessary.
  • 5. Fatigue or Cracks: Fatigue and cracks in the sprocket may result from high loads or stress concentrations. If such issues are observed, the sprocket should be replaced immediately to prevent catastrophic failure.
  • 6. Incorrect Gear Ratio: If the machinery’s speed or torque requirements are not being met, it may indicate an incorrect gear ratio. Double-checking the sprocket teeth count and adjusting the gear ratio as needed can address this problem.
  • 7. Excessive Heat: Overheating of the sprockets can lead to premature wear and reduced efficiency. It can be caused by overloading, improper lubrication, or inadequate ventilation. Identifying the root cause and rectifying it can resolve the heat-related issues.

Regular inspection, maintenance, and proper lubrication of drive sprockets are essential to prevent and address these common issues. If troubleshooting efforts do not resolve the problems or if there are concerns about the sprockets’ integrity, it is advisable to consult with a qualified engineer or a professional from the sprocket manufacturer to identify and address the specific issue properly.

drive sprocket

What are the best practices for adjusting and maintaining drive sprockets for optimal performance?

Proper adjustment and maintenance of drive sprockets are crucial for ensuring optimal performance, longevity, and safe operation of the power transmission system. Here are some best practices to follow:

  • Regular Inspection: Conduct regular visual inspections of the sprockets and the entire power transmission system. Look for signs of wear, damage, or misalignment. Identifying and addressing issues early can prevent costly repairs and downtime.
  • Lubrication: Proper lubrication is essential for reducing friction and wear between the sprockets and the chain or belt. Follow the manufacturer’s guidelines for the type and frequency of lubrication. Consider the operating environment, temperature, and load conditions when selecting the lubricant.
  • Alignment: Ensure proper alignment of the sprockets with each other and with other components of the system, such as shafts and bearings. Misalignment can lead to premature wear and decreased efficiency. Use alignment tools and techniques to achieve accurate alignment.
  • Tension: Maintain the correct tension in the chain or belt. Too much tension can cause excessive wear, while too little tension can lead to slippage and power loss. Follow the manufacturer’s recommendations for proper tensioning.
  • Cleanliness: Keep the sprockets and chain or belt clean from dirt, debris, and contaminants. Regularly clean the components and the surrounding area to prevent abrasive particles from accelerating wear.
  • Replace Worn Components: Monitor the wear on the sprockets and the chain or belt. Replace any components that have reached their wear limits to prevent further damage to the system and maintain optimal performance.
  • Use Quality Components: Invest in high-quality sprockets, chains, and belts that are suitable for the specific application and operating conditions. Inferior components may wear more quickly and compromise the overall performance of the system.
  • Temperature Considerations: If operating in extreme temperature conditions, choose materials and lubricants that can withstand the temperature range. High temperatures can accelerate wear and affect the performance of the system.
  • Training and Safety: Ensure that personnel responsible for adjusting and maintaining the drive sprockets are properly trained and follow safety protocols. Safety should always be a top priority during maintenance procedures.

By following these best practices, you can optimize the performance, efficiency, and service life of your drive sprockets and power transmission system, reducing the risk of unexpected breakdowns and improving the overall reliability of your machinery and equipment.

drive sprocket

Can I upgrade my drive sprockets to improve the efficiency and performance of my machinery?

Yes, upgrading your drive sprockets can significantly improve the efficiency and performance of your machinery. Drive sprockets play a crucial role in power transmission systems, and using advanced or specialized sprockets can lead to several benefits:

  • Enhanced Durability: Upgraded sprockets are often made from high-quality materials and advanced manufacturing processes, providing greater resistance to wear, fatigue, and corrosion. This increased durability can extend the sprockets’ lifespan and reduce the frequency of replacements, resulting in cost savings.
  • Improved Efficiency: Modern sprockets are designed with precision and often feature optimized tooth profiles. Upgrading to sprockets with improved tooth profiles can reduce friction, noise, and power losses during power transmission, leading to enhanced overall system efficiency.
  • Higher Load-Carrying Capacity: Some upgraded sprockets are engineered to handle higher loads and stresses, making them suitable for heavy-duty applications and improving the machinery’s capacity to handle more significant loads.
  • Customized Solutions: Manufacturers may offer customizable sprockets tailored to specific applications. Customization options can include different tooth counts, pitches, or even specialized coatings or surface treatments to meet the unique requirements of your machinery.
  • Compatibility with Advanced Chains: Upgraded sprockets are often designed to work seamlessly with modern, high-performance chains. Pairing these sprockets with advanced chains can further optimize the power transmission system’s performance and reliability.

When considering sprocket upgrades, it is essential to consult with knowledgeable suppliers or engineers familiar with power transmission systems. They can provide valuable insights into the best sprocket options for your specific machinery and operating conditions.

Remember that upgrading the drive sprockets alone might not yield the desired improvements if other components in the power transmission system, such as chains and bearings, are worn or outdated. Therefore, a comprehensive evaluation of the entire system is recommended to achieve the best results.

China Good quality Conveyor Drive Roller Chain Sprocket Industrial Transmission Metric Stainless Steel Taper Lock Idler CZPT (DIN/ANSI/JIS Standard or Made to Drawing)  China Good quality Conveyor Drive Roller Chain Sprocket Industrial Transmission Metric Stainless Steel Taper Lock Idler CZPT (DIN/ANSI/JIS Standard or Made to Drawing)
editor by CX 2023-12-22

China Custom Conveyor Drive Roller Chain Sprocket Industrial Transmission Metric Stainless Steel Taper Lock Idler CZPT (DIN/ANSI/JIS Standard or Made to Drawing)

Product Description

Conveyor Drive Roller Chain Sprocket Industrial Transmission Metric Stainless Steel Taper Lock Idler CZPT (DIN/ANSI/JIS Standard or Made to Drawing)
 

Product Description

Click the picture to learn the details of the corresponding sprocket ↓

Finished bore sprocket Idler sprocket Taper lock/ bushed sprocket QD sprocket Plate wheel sprocket
Double pitch sprocket Conveyor sprocket Flat top sprocket Stainless Steel sprocket Plastic sprocket

Standard sprockets
Standard: ANSI, DIN, JINS, ISO, KANA,Standard America

European standard sprockets

American standard sprockets Japan standard sprockets
DIN stock bore sprockets & plateheels ASA stock bore sprockets JIS stock sprockets
DIN finished bore sprockets finished bore sprockets finished bore sprockets
stainless steel sprockets stainless steel sprockets double single sprockets
taper bore sprockets double single sprockets&single type C sprockets double pitch sprockets
cast iron sprockets taper bore sprockets speed-ratio sprockets
platewheels for conveyor chain double pitch sprockets idler sprockets
table top wheels sprockets with split taper bushings table top sprockets
idler sprockets with ball bearing sprockets with QD bushings  
double simplex sprockets    

European standard sprockets

DIN stock bore sprockets & plateheels

03B-1 04B-1 05B-1-2 06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3
28B-1-2-3 32B-1-2-3

03A-1 04A-1 05A-1-2 06A-1-2-3 081A-1 083A-1/084A-1 085A-1 086A-1 08A-1-2-3 10A-1-2-3 12A-1-2-3 16A-1-2-3 20A-1-2-3 24A-1-2-3
28A-1-2-3 32A-1-2-3

DIN finished bore sprockets

06B-1 08B-1 10B-1 12B-1 16B-1 20B-1

stainless steel sprockets

06B-1 08B-1 10B-1 12B-1 16B-1

taper bore sprockets

3/8″×7/32″ 1/2″×5/16″ 5/8″×3/8″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

cast iron sprockets

06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3

platewheels for conveyor chain

20×16mm 30×17.02mm P50 P75 P100

table top wheels

P38.1

idler sprockets with ball bearing

8×1/8″ 3/8″×7/32″ 1/2″×1/8″ 1/2″×3/16″ 1/2″×5/16″ 5/8″×3/8″ 5/8″×3/8″ 5/8″×3/8″ 3/4″×7/16″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

double simplex sprockets

06B-1 08B-1 10B-1 12B-1 16B-1

American standard sprockets

ASA stock bore sprockets

-2 35-3 -2 40-3 50 50-2-50-3 60 60-2 60-3 80-80-2 80-3 100 100-2 100-3 120 120-2 120-3 140 140-2 160 160-2 180 200
200-2 240

finished bore sprockets

stainless steel sprockets

60

double single sprockets&single type Csprockets

taper bore sprockets

35 35-2 -2 50 50-2 60 60-2 80 80-2

double pitch sprockets

2040/2042 2050/2052 2060/2062 2080/2082

sprockets with split taper bushings

40-2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 120 120-2

sprockets with QD bushings

35 35-1 35-2 -2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 100-3

Japan standard sprockets

JIS stock sprockets

140 160

finished bore sprockets

FB25B FB35B FB40B FB50B FB60B FB80B FB100B FB120B

double single sprockets

40SD 50SD 60SD 80SD 100SD

double pitch sprockets

speed-ratio sprockets

C3B9N C3B10N C4B10N C4B11 C4B12 C5B10N C5B11 C5B12N C6B10N C6B11 C6B12

idler sprockets

35BB20H 40BB17H 40BB18H 50BB15H 50BB17H 60BB13H 60BB15H 80BB12H

table top sprockets

P38.1

Custom service OEM / ODM 

We can also customize non-standard sprockets according to your needs, and you can send us the design drawings

1. Material: 1045 Steel / Alloy Steel / Stainless Steel 304 & 316 
2. Pilot bore, finished bore, taper bore and special bore. 
3. Bright surface / high precision / Blacking /Electrophoretic-Coated
4. Advanced heat treatment and surface treatment craft
5. Processing Equipment: Hobbing machine, Slotting machine, CNC lathes and other equipment.

 

Related products

 

Company Profile

HangZhou Ever-power Transmission Co., Ltd. produces gears, sprockets, shafts, clutches, chains, racks, boxes, flanges, couplings, stamping parts, bevel gears, drive axle assemblies, non-drive axle assemblies, universal joints, shift forks, outriggers, shift rods, and bearing seats. The company has advanced production equipment and testing methods, and is careful with gear and rack products, and repeatedly polishing the details of parts, striving for perfection and casting quality. It has been unanimously recognized by many customers.

 Additionally, all our production procedures are in compliance with ISO9001 standards. We also can design and make non-standard products to meet customers’ special requirements. Quality and credit are the bases that make a corporation alive. We will provide best services and high quality products with all sincerity. If you need any information or samples, please contact us and you will have our soon reply.

Our equipments
Our testing equipments
Our certificate

 

FAQ

About HangZhou Ever-power group(HZPT):

Q: Are you trading company or manufacturer ?
A: Our group consists in 3 factories and 2 abroad sales corporations.

Q: Do you provide samples ? is it free or extra ?
A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: How long is your delivery time ? What is your terms of payment ?
A: Generally it is 40-45 days. The time may vary depending on the product and the level of customization. For standard products, the payment is: 30% T/T in advance ,balance before shippment.

Q: What is the exact MOQ or price for your product ?
A: As an OEM company, we can provide and adapt our products to a wide range of needs.Thus, MOQ and price may greatly vary with size, material and further specifications; For instance, costly products or standard products will usually have a lower MOQ. 

Please contact us with all relevant details to get the most accurate quotation.

 

Standard Or Nonstandard: Nonstandard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Manufacturing Method: Rolling Gear
Toothed Portion Shape: Curved Gear
Material: Cast Steel

drive sprocket

What are the noise and vibration levels associated with drive sprocket systems?

The noise and vibration levels associated with drive sprocket systems can vary depending on several factors, including the type of sprocket, the design of the system, the speed of operation, and the condition of the components. Here are some key points to consider:

  • 1. Roller Chain Sprockets: In systems that use roller chains, the noise and vibration levels are generally higher compared to other types of power transmission systems. The impact of the chain engaging with the sprocket teeth can produce noise and vibration, especially at higher speeds.
  • 2. Tooth Profile and Design: The design and profile of the sprocket teeth can influence the noise level. Sprockets with irregular tooth profiles or poor manufacturing may produce higher noise and vibration levels.
  • 3. Lubrication: Proper lubrication of the sprocket and chain can help reduce noise and vibration by minimizing metal-to-metal contact and reducing friction.
  • 4. Alignment and Tension: Misalignment of the sprockets or improper chain tension can lead to increased noise and vibration due to uneven loading and wear.
  • 5. Wear and Maintenance: Worn-out sprockets or chains can increase noise levels and cause vibrations. Regular inspection and maintenance can help identify and address such issues.
  • 6. Damping and Isolation: In some applications, damping and isolation techniques may be used to reduce the transmission of vibrations to other parts of the machinery.

To minimize noise and vibration levels in drive sprocket systems, it’s essential to choose high-quality sprockets and chains, ensure proper alignment and tension, and perform regular maintenance. Additionally, using noise-absorbing materials and employing vibration isolation techniques can further help in reducing the overall noise and vibration levels in the system.

drive sprocket

Can I use a drive sprocket system for vertical power transmission?

Yes, a drive sprocket system can be used for vertical power transmission in certain applications. The vertical orientation of the power transmission system introduces some unique challenges and considerations that need to be addressed to ensure its proper functioning and longevity.

When using a drive sprocket system for vertical power transmission, here are some important factors to take into account:

  1. Load Capacity: The sprockets, chain, or belt, and other components must be capable of handling the vertical load. In vertical systems, the weight of the load can put additional strain on the sprockets and chain or belt, requiring appropriate selection and sizing of components.
  2. Lubrication: Adequate lubrication is crucial for vertical power transmission systems. Gravity can cause the lubricant to drain more quickly from the chain or belt, leading to increased wear. Regular lubrication is necessary to minimize friction and ensure smooth operation.
  3. Chain or Belt Type: Choosing the right type of chain or belt is important for vertical power transmission. Inclined conveyors, elevators, and some lifting systems often use specialized chains with attachments or high-friction coatings to prevent slippage and maintain stability during vertical movement.
  4. Alignment and Tension: Proper alignment and tension are critical for vertical power transmission systems. Misalignment can lead to uneven wear and premature failure, while incorrect tension may cause slippage and disruption in power transfer.
  5. Overhung Load: If the sprocket is located on an overhung shaft, the system must be designed to handle the additional bending moments and forces resulting from the vertical load.
  6. Environmental Factors: Consider the environmental conditions in which the vertical power transmission system operates. Dust, debris, temperature variations, and moisture can impact the performance and longevity of the system.

Vertical power transmission using a drive sprocket system is common in industries such as material handling, agriculture, mining, and construction. Elevators, bucket conveyors, vertical lifting systems, and certain types of machinery rely on sprockets and chains or belts to efficiently transfer power between vertically spaced components.

Proper design, maintenance, and component selection are essential to ensure the reliable and safe operation of a vertical drive sprocket system, meeting the specific requirements of the application and adhering to safety standards and regulations.

drive sprocket

How do I choose the right size and pitch of a drive sprocket for my specific application?

Choosing the correct size and pitch of a drive sprocket is essential to ensure the proper functioning and efficiency of the power transmission system. Here are the steps to help you select the right drive sprocket for your specific application:

  1. Identify the Power Requirements: Determine the amount of power (torque and speed) required to drive the driven component. Consider factors such as load, operating conditions, and the desired speed of the driven component.
  2. Calculate the Gear Ratio: Calculate the desired gear ratio between the driving and driven sprockets. The gear ratio is determined by dividing the number of teeth on the driven sprocket by the number of teeth on the driving sprocket. Adjusting the gear ratio allows you to control the speed and torque of the driven component.
  3. Choose the Pitch: The pitch of the sprocket should match the pitch of the chain or belt in the system. The pitch refers to the distance between adjacent chain or belt links. Common pitch sizes include 0.25″, 0.375″, 0.5″, 0.625″, and 0.75″. Ensure that both the chain or belt and the sprocket have the same pitch to achieve proper engagement and smooth power transfer.
  4. Select the Number of Teeth: Once you have the desired gear ratio and the pitch size, calculate the number of teeth needed on each sprocket. The number of teeth on the driven sprocket should be divided by the gear ratio to determine the number of teeth on the driving sprocket.
  5. Consider the Sprocket Material: The material of the sprocket is crucial, especially in high-load or high-speed applications. Common materials include steel, stainless steel, and aluminum. Each material has its own set of properties, including strength, weight, and resistance to wear and corrosion. Choose the material that best suits the demands of your application.
  6. Check for Compatibility: Ensure that the chosen sprocket is compatible with the specific chain or belt you are using. The sprocket’s tooth profile and pitch diameter should match the chain or belt’s design for proper engagement and smooth operation.
  7. Consider Environmental Factors: If your application operates in extreme conditions, such as high temperatures or corrosive environments, choose a sprocket material that can withstand these conditions without compromising performance.
  8. Consult with Experts: If you are unsure about the right size and pitch of the drive sprocket for your application, consult with experienced engineers or sprocket manufacturers. They can provide valuable insights and recommend the most suitable sprocket for your specific needs.

By following these steps and considering the specific requirements of your application, you can select the right size and pitch of the drive sprocket to ensure optimal performance, efficiency, and longevity of your power transmission system.

China Custom Conveyor Drive Roller Chain Sprocket Industrial Transmission Metric Stainless Steel Taper Lock Idler CZPT (DIN/ANSI/JIS Standard or Made to Drawing)  China Custom Conveyor Drive Roller Chain Sprocket Industrial Transmission Metric Stainless Steel Taper Lock Idler CZPT (DIN/ANSI/JIS Standard or Made to Drawing)
editor by CX 2023-12-01

China manufacturer Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket

Product Description

Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket

Standard sprockets:

European standard sprockets

DIN stock bore sprockets & plateheels

03B-1 04B-1 05B-1-2 06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3
28B-1-2-3 32B-1-2-3

03A-1 04A-1 05A-1-2 06A-1-2-3 081A-1 083A-1/084A-1 085A-1 086A-1 08A-1-2-3 10A-1-2-3 12A-1-2-3 16A-1-2-3 20A-1-2-3 24A-1-2-3
28A-1-2-3 32A-1-2-3

DIN finished bore sprockets

06B-1 08B-1 10B-1 12B-1 16B-1 20B-1

stainless steel sprockets

06B-1 08B-1 10B-1 12B-1 16B-1

taper bore sprockets

3/8″×7/32″ 1/2″×5/16″ 5/8″×3/8″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

cast iron sprockets

06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3

platewheels for conveyor chain

20×16mm 30×17.02mm P50 P75 P100

table top wheels

P38.1

idler sprockets with ball bearing

8×1/8″ 3/8″×7/32″ 1/2″×1/8″ 1/2″×3/16″ 1/2″×5/16″ 5/8″×3/8″ 5/8″×3/8″ 5/8″×3/8″ 3/4″×7/16″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

double simplex sprockets

06B-1 08B-1 10B-1 12B-1 16B-1

American standard sprockets

ASA stock bore sprockets

-2 35-3 -2 40-3 50 50-2-50-3 60 60-2 60-3 80-80-2 80-3 100 100-2 100-3 120 120-2 120-3 140 140-2 160 160-2 180 200
200-2 240

finished bore sprockets

stainless steel sprockets

60

double single sprockets&single type Csprockets

taper bore sprockets

35 35-2 -2 50 50-2 60 60-2 80 80-2

double pitch sprockets

2040/2042 2050/2052 2060/2062 2080/2082

sprockets with split taper bushings

40-2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 120 120-2

sprockets with QD bushings

35 35-1 35-2 -2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 100-3

Japan standard sprockets

JIS stock sprockets

140 160

finished bore sprockets

FB25B FB35B FB40B FB50B FB60B FB80B FB100B FB120B

double single sprockets

40SD 50SD 60SD 80SD 100SD

double pitch sprockets

speed-ratio sprockets

C3B9N C3B10N C4B10N C4B11 C4B12 C5B10N C5B11 C5B12N C6B10N C6B11 C6B12

idler sprockets

35BB20H 40BB17H 40BB18H 50BB15H 50BB17H 60BB13H 60BB15H 80BB12H

table top sprockets

P38.1

 

Customization process :

1.Provide documentation: CAD, DWG, DXF, PDF,3D model ,STEP, IGS, PRT
2.Quote: We will give you the best price within 24 hours
3.Place an order: Confirm the cooperation details and CZPT the contract, and provide the labeling service
4.Processing and customization: Short delivery time

Related products:

 

Our Factory

If you need to customize transmission products,
please click here to contact us!

Chain Sprockets:

 

Company Information:

 

 

 

 

Standard Or Nonstandard: Standard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Manufacturing Method: Cut Gear
Toothed Portion Shape: Spur Gear
Material: Custom Made
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

drive sprocket

Can drive sprockets be used in underwater or harsh environmental conditions?

Whether drive sprockets can be used in underwater or harsh environmental conditions depends on the material and design of the sprocket, as well as the specific conditions of the application. Here are some considerations:

  • 1. Stainless Steel Sprockets: Stainless steel sprockets are highly resistant to corrosion and can be used in various harsh environments, including underwater applications. They are commonly used in marine equipment and other outdoor applications exposed to moisture and humidity.
  • 2. Coated or Plated Sprockets: Some sprockets are coated or plated with materials like zinc, nickel, or chrome to enhance their corrosion resistance. These sprockets can also be used in mildly harsh environments but may have limitations in prolonged underwater use.
  • 3. Sealed or Shielded Bearings: In some applications, especially those exposed to dust, dirt, or debris, sprockets with sealed or shielded bearings are used to protect the internal components from contamination.
  • 4. Specialized Materials: In extremely harsh environments, such as underwater mining or deep-sea operations, specialized materials with high corrosion resistance and durability may be required.

It’s essential to consider the specific conditions of your application when selecting drive sprockets for use in underwater or harsh environments. Regular maintenance and proper lubrication are also critical to extending the lifespan of sprockets in such conditions. Additionally, consulting with experts or manufacturers with experience in supplying sprockets for similar environments can help you make the right choice for your application.

drive sprocket

How do I calculate the gear ratio for a drive sprocket and chain setup?

Calculating the gear ratio for a drive sprocket and chain setup involves understanding the relationship between the number of teeth on the sprockets in the system. The gear ratio is a crucial factor that determines the speed and torque output of the system. Here’s how you can calculate the gear ratio:

  1. Count the Teeth: Begin by counting the number of teeth on both the driving sprocket (connected to the power source) and the driven sprocket (connected to the load).
  2. Divide the Number of Teeth: Divide the number of teeth on the driven sprocket by the number of teeth on the driving sprocket.

The formula for calculating the gear ratio (GR) can be expressed as:

GR = Number of Teeth on Driven Sprocket / Number of Teeth on Driving Sprocket

For example, if the driven sprocket has 20 teeth and the driving sprocket has 10 teeth, the gear ratio would be:

GR = 20 / 10 = 2

In this case, the gear ratio is 2, which means that the driven sprocket will rotate twice for every single rotation of the driving sprocket. Gear ratio values greater than 1 indicate that the driven sprocket rotates at a higher speed than the driving sprocket, providing an increase in speed with a corresponding decrease in torque. Conversely, gear ratio values less than 1 indicate a reduction in speed and an increase in torque.

It’s essential to consider the gear ratio carefully when designing a drive sprocket and chain setup for specific applications. The gear ratio determines the mechanical advantage of the system, affecting its overall performance, speed, and torque output. By selecting the appropriate sprocket sizes and gear ratio, you can optimize the efficiency and functionality of the power transmission system for your particular machinery or equipment.

drive sprocket

Can I upgrade my drive sprockets to improve the efficiency and performance of my machinery?

Yes, upgrading your drive sprockets can significantly improve the efficiency and performance of your machinery. Drive sprockets play a crucial role in power transmission systems, and using advanced or specialized sprockets can lead to several benefits:

  • Enhanced Durability: Upgraded sprockets are often made from high-quality materials and advanced manufacturing processes, providing greater resistance to wear, fatigue, and corrosion. This increased durability can extend the sprockets’ lifespan and reduce the frequency of replacements, resulting in cost savings.
  • Improved Efficiency: Modern sprockets are designed with precision and often feature optimized tooth profiles. Upgrading to sprockets with improved tooth profiles can reduce friction, noise, and power losses during power transmission, leading to enhanced overall system efficiency.
  • Higher Load-Carrying Capacity: Some upgraded sprockets are engineered to handle higher loads and stresses, making them suitable for heavy-duty applications and improving the machinery’s capacity to handle more significant loads.
  • Customized Solutions: Manufacturers may offer customizable sprockets tailored to specific applications. Customization options can include different tooth counts, pitches, or even specialized coatings or surface treatments to meet the unique requirements of your machinery.
  • Compatibility with Advanced Chains: Upgraded sprockets are often designed to work seamlessly with modern, high-performance chains. Pairing these sprockets with advanced chains can further optimize the power transmission system’s performance and reliability.

When considering sprocket upgrades, it is essential to consult with knowledgeable suppliers or engineers familiar with power transmission systems. They can provide valuable insights into the best sprocket options for your specific machinery and operating conditions.

Remember that upgrading the drive sprockets alone might not yield the desired improvements if other components in the power transmission system, such as chains and bearings, are worn or outdated. Therefore, a comprehensive evaluation of the entire system is recommended to achieve the best results.

China manufacturer Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket  China manufacturer Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket
editor by CX 2023-10-09

China best Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket

Product Description

Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket

Standard sprockets:

European standard sprockets

DIN stock bore sprockets & plateheels

03B-1 04B-1 05B-1-2 06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3
28B-1-2-3 32B-1-2-3

03A-1 04A-1 05A-1-2 06A-1-2-3 081A-1 083A-1/084A-1 085A-1 086A-1 08A-1-2-3 10A-1-2-3 12A-1-2-3 16A-1-2-3 20A-1-2-3 24A-1-2-3
28A-1-2-3 32A-1-2-3

DIN finished bore sprockets

06B-1 08B-1 10B-1 12B-1 16B-1 20B-1

stainless steel sprockets

06B-1 08B-1 10B-1 12B-1 16B-1

taper bore sprockets

3/8″×7/32″ 1/2″×5/16″ 5/8″×3/8″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

cast iron sprockets

06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3

platewheels for conveyor chain

20×16mm 30×17.02mm P50 P75 P100

table top wheels

P38.1

idler sprockets with ball bearing

8×1/8″ 3/8″×7/32″ 1/2″×1/8″ 1/2″×3/16″ 1/2″×5/16″ 5/8″×3/8″ 5/8″×3/8″ 5/8″×3/8″ 3/4″×7/16″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

double simplex sprockets

06B-1 08B-1 10B-1 12B-1 16B-1

American standard sprockets

ASA stock bore sprockets

-2 35-3 -2 40-3 50 50-2-50-3 60 60-2 60-3 80-80-2 80-3 100 100-2 100-3 120 120-2 120-3 140 140-2 160 160-2 180 200
200-2 240

finished bore sprockets

stainless steel sprockets

60

double single sprockets&single type Csprockets

taper bore sprockets

35 35-2 -2 50 50-2 60 60-2 80 80-2

double pitch sprockets

2040/2042 2050/2052 2060/2062 2080/2082

sprockets with split taper bushings

40-2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 120 120-2

sprockets with QD bushings

35 35-1 35-2 -2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 100-3

Japan standard sprockets

JIS stock sprockets

140 160

finished bore sprockets

FB25B FB35B FB40B FB50B FB60B FB80B FB100B FB120B

double single sprockets

40SD 50SD 60SD 80SD 100SD

double pitch sprockets

speed-ratio sprockets

C3B9N C3B10N C4B10N C4B11 C4B12 C5B10N C5B11 C5B12N C6B10N C6B11 C6B12

idler sprockets

35BB20H 40BB17H 40BB18H 50BB15H 50BB17H 60BB13H 60BB15H 80BB12H

table top sprockets

P38.1

 

Customization process :

1.Provide documentation: CAD, DWG, DXF, PDF,3D model ,STEP, IGS, PRT
2.Quote: We will give you the best price within 24 hours
3.Place an order: Confirm the cooperation details and CZPT the contract, and provide the labeling service
4.Processing and customization: Short delivery time

Related products:

 

Our Factory

If you need to customize transmission products,
please click here to contact us!

Chain Sprockets:

 

Company Information:

 

 

 

 

Standard Or Nonstandard: Standard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Manufacturing Method: Cut Gear
Toothed Portion Shape: Spur Gear
Material: Custom Made
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

drive sprocket

What are the load-carrying capacities of different drive sprocket configurations?

The load-carrying capacity of a drive sprocket depends on various factors, including the material of the sprocket, its size, design, and the type of power transmission system it is used in. Generally, larger and more robust drive sprockets can handle higher loads than smaller ones.

Steel drive sprockets are commonly used in heavy-duty applications and can handle significant loads. They are known for their strength and durability, making them suitable for demanding industrial environments.

Aluminum drive sprockets, while lighter in weight, may have a lower load-carrying capacity compared to steel. However, they are preferred in applications where weight reduction is essential, such as in bicycles and some machinery.

Nylon or plastic drive sprockets are used in lighter-duty applications and may have lower load-carrying capacities compared to steel or aluminum. They are often used in situations where the sprocket needs to be quieter, corrosion-resistant, or non-conductive.

The load-carrying capacity of a drive sprocket can also be influenced by the number of teeth and the pitch of the sprocket. A higher number of teeth can distribute the load over more contact points, increasing the capacity. Similarly, sprockets with a coarser pitch may have higher load-carrying capacities compared to finer-pitched sprockets.

It’s important to select the appropriate drive sprocket based on the specific requirements of your application, taking into consideration factors like the expected loads, operating conditions, and desired level of performance and reliability.

drive sprocket

Can drive sprockets be used in automotive and motorcycle applications?

Yes, drive sprockets are commonly used in automotive and motorcycle applications as part of the power transmission systems. In these vehicles, drive sprockets work in conjunction with chains or belts to transfer power from the engine to the wheels, enabling the vehicle to move.

Automotive Applications:

In automotive applications, drive sprockets are most commonly found in internal combustion engine vehicles that use a timing chain or timing belt. The timing chain or belt connects the engine’s crankshaft to the camshaft(s), ensuring the precise opening and closing of engine valves at the right time. This synchronization is crucial for the engine’s proper operation and performance. Automotive drive sprockets are often made of durable materials like steel to withstand the high loads and stresses encountered in engines.

Motorcycle Applications:

In motorcycles, drive sprockets are an essential part of the chain drive system. Most motorcycles use a chain to transfer power from the engine’s output shaft to the rear wheel. The drive sprocket, located on the output shaft, meshes with the motorcycle chain, which, in turn, connects to the driven sprocket on the rear wheel. As the engine revs up, power is transmitted through the chain and drive sprocket to propel the motorcycle forward. Motorcycle drive sprockets are also commonly made of steel or other durable materials to withstand the forces involved in transmitting power to the rear wheel.

Advantages of Drive Sprockets in Automotive and Motorcycle Applications:

  • Efficient Power Transmission: Drive sprockets efficiently transfer power from the engine to the wheels, ensuring smooth acceleration and driving performance.
  • Reliability: When properly maintained, drive sprockets are durable and can withstand the rigors of automotive and motorcycle operation.
  • Cost-Effective: Drive sprockets and chain or belt systems are generally cost-effective compared to other power transmission methods.
  • Adaptability: Drive sprockets can be easily replaced or modified to achieve different gear ratios, allowing for customization of vehicle performance.
  • Overall, drive sprockets play a crucial role in power transmission systems, making them integral components in automotive and motorcycle applications. Regular inspection, maintenance, and replacement of worn-out sprockets are essential to ensure optimal performance and safety on the road.

    drive sprocket

    Can you explain the role of drive sprockets in power transmission systems?

    In power transmission systems, drive sprockets play a crucial role in transmitting rotational motion and power from one component to another using a chain or a toothed belt. The sprocket is an essential part of the system that enables smooth and efficient power transfer between the driving and driven components. Here’s how drive sprockets function in power transmission:

    1. Power Transfer: The primary function of a drive sprocket is to transfer power from a motor or engine to the driven component, such as a conveyor belt, machinery, or equipment. When the driving sprocket rotates, it engages with the chain or belt, transmitting rotational motion and torque to the driven sprocket.

    2. Gear Ratio Adjustment: By using sprockets with different numbers of teeth, the gear ratio between the driving and driven sprockets can be adjusted. Changing the gear ratio allows the system to achieve different speeds and torques, catering to specific application requirements. This gear ratio adjustment is crucial in ensuring that the driven component operates at the desired speed and efficiency.

    3. Speed Conversion: Drive sprockets facilitate the conversion of rotational speed between the driving and driven components. For example, a small driving sprocket rotating at high speed can drive a larger driven sprocket, resulting in a lower rotational speed but higher torque at the driven component.

    4. Directional Changes: In some power transmission systems, multiple sprockets and chains can be used to change the direction of rotational motion. This is particularly useful in complex machinery where different components need to rotate in different directions or perform specific tasks.

    5. Tension and Slack Control: Drive sprockets, along with idler sprockets, help in controlling the tension and slack in the chain or belt. Proper tension is essential for the smooth and efficient operation of the power transmission system. Idler sprockets are often used to maintain tension and prevent the chain or belt from becoming loose.

    6. Noise and Vibration Reduction: Well-maintained and properly aligned drive sprockets contribute to reducing noise and vibration in the power transmission system. This enhances the overall efficiency and minimizes wear on the components.

    Overall, drive sprockets are fundamental components in power transmission systems that enable the controlled transfer of mechanical power from the source to the application. Their design, size, and placement play a critical role in determining the system’s performance, efficiency, and reliability.

    China best Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket  China best Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket
    editor by CX 2023-09-30

    China Standard Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket

    Product Description

    Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket

    Standard sprockets:

    European standard sprockets

    DIN stock bore sprockets & plateheels

    03B-1 04B-1 05B-1-2 06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3
    28B-1-2-3 32B-1-2-3

    03A-1 04A-1 05A-1-2 06A-1-2-3 081A-1 083A-1/084A-1 085A-1 086A-1 08A-1-2-3 10A-1-2-3 12A-1-2-3 16A-1-2-3 20A-1-2-3 24A-1-2-3
    28A-1-2-3 32A-1-2-3

    DIN finished bore sprockets

    06B-1 08B-1 10B-1 12B-1 16B-1 20B-1

    stainless steel sprockets

    06B-1 08B-1 10B-1 12B-1 16B-1

    taper bore sprockets

    3/8″×7/32″ 1/2″×5/16″ 5/8″×3/8″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

    cast iron sprockets

    06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3

    platewheels for conveyor chain

    20×16mm 30×17.02mm P50 P75 P100

    table top wheels

    P38.1

    idler sprockets with ball bearing

    8×1/8″ 3/8″×7/32″ 1/2″×1/8″ 1/2″×3/16″ 1/2″×5/16″ 5/8″×3/8″ 5/8″×3/8″ 5/8″×3/8″ 3/4″×7/16″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

    double simplex sprockets

    06B-1 08B-1 10B-1 12B-1 16B-1

    American standard sprockets

    ASA stock bore sprockets

    -2 35-3 -2 40-3 50 50-2-50-3 60 60-2 60-3 80-80-2 80-3 100 100-2 100-3 120 120-2 120-3 140 140-2 160 160-2 180 200
    200-2 240

    finished bore sprockets

    stainless steel sprockets

    60

    double single sprockets&single type Csprockets

    taper bore sprockets

    35 35-2 -2 50 50-2 60 60-2 80 80-2

    double pitch sprockets

    2040/2042 2050/2052 2060/2062 2080/2082

    sprockets with split taper bushings

    40-2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 120 120-2

    sprockets with QD bushings

    35 35-1 35-2 -2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 100-3

    Japan standard sprockets

    JIS stock sprockets

    140 160

    finished bore sprockets

    FB25B FB35B FB40B FB50B FB60B FB80B FB100B FB120B

    double single sprockets

    40SD 50SD 60SD 80SD 100SD

    double pitch sprockets

    speed-ratio sprockets

    C3B9N C3B10N C4B10N C4B11 C4B12 C5B10N C5B11 C5B12N C6B10N C6B11 C6B12

    idler sprockets

    35BB20H 40BB17H 40BB18H 50BB15H 50BB17H 60BB13H 60BB15H 80BB12H

    table top sprockets

    P38.1

     

    Customization process :

    1.Provide documentation: CAD, DWG, DXF, PDF,3D model ,STEP, IGS, PRT
    2.Quote: We will give you the best price within 24 hours
    3.Place an order: Confirm the cooperation details and CZPT the contract, and provide the labeling service
    4.Processing and customization: Short delivery time

    Related products:

     

    Our Factory

    If you need to customize transmission products,
    please click here to contact us!

    Chain Sprockets:

     

    Company Information:

     

     

     

     

    Standard Or Nonstandard: Standard
    Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
    Hardness: Hardened Tooth Surface
    Manufacturing Method: Cut Gear
    Toothed Portion Shape: Spur Gear
    Material: Custom Made
    Samples:
    US$ 9999/Piece
    1 Piece(Min.Order)

    |
    Request Sample

    drive sprocket

    What are the temperature limits for the operation of drive sprockets?

    The temperature limits for the operation of drive sprockets depend on the material used in their construction and the specific application they are intended for. Different materials have different temperature ranges in which they can effectively function without significant degradation or failure. Here are some general guidelines regarding temperature limits for common drive sprocket materials:

    • 1. Steel Sprockets: Steel sprockets are widely used and have a broad temperature range. In most cases, they can operate efficiently within temperatures ranging from -20°C to 250°C (-4°F to 482°F). However, for high-temperature applications beyond this range, special heat-resistant steels may be required.
    • 2. Cast Iron Sprockets: Cast iron sprockets are suitable for temperatures between -20°C to 200°C (-4°F to 392°F). They are commonly used in various industrial applications.
    • 3. Plastic or Nylon Sprockets: These sprockets have lower temperature limits and are generally suitable for temperatures ranging from -40°C to 100°C (-40°F to 212°F). They are often used in lighter-duty applications.
    • 4. Aluminum Sprockets: Aluminum sprockets have a temperature range of about -40°C to 150°C (-40°F to 302°F). They are commonly used in lightweight applications where weight is a critical factor.

    It’s essential to select the appropriate material for your drive sprocket based on the operating conditions and temperature requirements of your specific application. Extreme temperatures outside the recommended range can lead to premature wear, reduced performance, and even failure of the sprocket.

    Always refer to the manufacturer’s specifications and consult with experts in the field to ensure that you are using the right type of drive sprocket for the temperature conditions in your application.

    drive sprocket

    How do I ensure proper chain tension and alignment with drive sprockets?

    Proper chain tension and alignment are critical for the smooth and efficient operation of a drive sprocket and chain system. Incorrect tension and misalignment can lead to premature wear, increased friction, and reduced overall performance. Here are the steps to ensure proper chain tension and alignment:

    1. Initial Installation: When installing a new chain on the drive sprockets, ensure that the chain is routed correctly and securely around the sprockets. Check the manufacturer’s guidelines for the recommended tension for your specific chain and sprocket combination.

    2. Tension Adjustment: Over time, chains may stretch or experience wear. Regularly check the chain tension and make adjustments as needed to maintain the correct tension. Most drive systems incorporate tensioners or adjustable mounts to facilitate tension adjustments.

    3. Proper Tension: The chain should have enough tension to avoid slippage and prevent excessive sagging, but it should not be overly tight, as this can cause premature wear on the chain and sprockets. Follow the manufacturer’s guidelines for the optimal tension range.

    4. Alignment: Check the alignment of the drive sprockets and ensure they are in the same plane. Misaligned sprockets can cause the chain to run at an angle, leading to uneven wear and noise. Use alignment tools or laser alignment systems for precise alignment.

    5. Chain Sag: In long-chain systems, some sag is normal. However, excessive sag can be problematic. Adjust the tension to minimize sag while allowing enough flexibility for smooth operation.

    6. Lubrication: Proper lubrication is essential for reducing friction and wear between the chain and sprockets. Follow the manufacturer’s recommendations for the type and frequency of lubrication.

    7. Regular Inspection: Regularly inspect the chain and sprockets for signs of wear, damage, or misalignment. Address any issues promptly to prevent further problems and extend the life of the system.

    8. Temperature Considerations: In applications with extreme temperatures, consider the thermal expansion/contraction of the chain. Allow for adjustments to accommodate temperature-related changes.

    9. Operational Environment: Environmental factors, such as dust, debris, or corrosive substances, can impact chain performance. Choose appropriate materials and maintenance practices to suit the operating environment.

    By following these steps and ensuring proper chain tension and alignment, you can optimize the performance and longevity of your drive sprocket and chain system, reducing downtime and maintenance costs while maximizing efficiency.

    drive sprocket

    How do I choose the right size and pitch of a drive sprocket for my specific application?

    Choosing the correct size and pitch of a drive sprocket is essential to ensure the proper functioning and efficiency of the power transmission system. Here are the steps to help you select the right drive sprocket for your specific application:

    1. Identify the Power Requirements: Determine the amount of power (torque and speed) required to drive the driven component. Consider factors such as load, operating conditions, and the desired speed of the driven component.
    2. Calculate the Gear Ratio: Calculate the desired gear ratio between the driving and driven sprockets. The gear ratio is determined by dividing the number of teeth on the driven sprocket by the number of teeth on the driving sprocket. Adjusting the gear ratio allows you to control the speed and torque of the driven component.
    3. Choose the Pitch: The pitch of the sprocket should match the pitch of the chain or belt in the system. The pitch refers to the distance between adjacent chain or belt links. Common pitch sizes include 0.25″, 0.375″, 0.5″, 0.625″, and 0.75″. Ensure that both the chain or belt and the sprocket have the same pitch to achieve proper engagement and smooth power transfer.
    4. Select the Number of Teeth: Once you have the desired gear ratio and the pitch size, calculate the number of teeth needed on each sprocket. The number of teeth on the driven sprocket should be divided by the gear ratio to determine the number of teeth on the driving sprocket.
    5. Consider the Sprocket Material: The material of the sprocket is crucial, especially in high-load or high-speed applications. Common materials include steel, stainless steel, and aluminum. Each material has its own set of properties, including strength, weight, and resistance to wear and corrosion. Choose the material that best suits the demands of your application.
    6. Check for Compatibility: Ensure that the chosen sprocket is compatible with the specific chain or belt you are using. The sprocket’s tooth profile and pitch diameter should match the chain or belt’s design for proper engagement and smooth operation.
    7. Consider Environmental Factors: If your application operates in extreme conditions, such as high temperatures or corrosive environments, choose a sprocket material that can withstand these conditions without compromising performance.
    8. Consult with Experts: If you are unsure about the right size and pitch of the drive sprocket for your application, consult with experienced engineers or sprocket manufacturers. They can provide valuable insights and recommend the most suitable sprocket for your specific needs.

    By following these steps and considering the specific requirements of your application, you can select the right size and pitch of the drive sprocket to ensure optimal performance, efficiency, and longevity of your power transmission system.

    China Standard Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket  China Standard Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket
    editor by CX 2023-07-31

    China manufacturer Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket

    Product Description

    Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket

    Standard sprockets:

    European standard sprockets

    DIN stock bore sprockets & plateheels

    03B-1 04B-1 05B-1-2 06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3
    28B-1-2-3 32B-1-2-3

    03A-1 04A-1 05A-1-2 06A-1-2-3 081A-1 083A-1/084A-1 085A-1 086A-1 08A-1-2-3 10A-1-2-3 12A-1-2-3 16A-1-2-3 20A-1-2-3 24A-1-2-3
    28A-1-2-3 32A-1-2-3

    DIN finished bore sprockets

    06B-1 08B-1 10B-1 12B-1 16B-1 20B-1

    stainless steel sprockets

    06B-1 08B-1 10B-1 12B-1 16B-1

    taper bore sprockets

    3/8″×7/32″ 1/2″×5/16″ 5/8″×3/8″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

    cast iron sprockets

    06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3

    platewheels for conveyor chain

    20×16mm 30×17.02mm P50 P75 P100

    table top wheels

    P38.1

    idler sprockets with ball bearing

    8×1/8″ 3/8″×7/32″ 1/2″×1/8″ 1/2″×3/16″ 1/2″×5/16″ 5/8″×3/8″ 5/8″×3/8″ 5/8″×3/8″ 3/4″×7/16″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

    double simplex sprockets

    06B-1 08B-1 10B-1 12B-1 16B-1

    American standard sprockets

    ASA stock bore sprockets

    -2 35-3 -2 40-3 50 50-2-50-3 60 60-2 60-3 80-80-2 80-3 100 100-2 100-3 120 120-2 120-3 140 140-2 160 160-2 180 200
    200-2 240

    finished bore sprockets

    stainless steel sprockets

    60

    double single sprockets&single type Csprockets

    taper bore sprockets

    35 35-2 -2 50 50-2 60 60-2 80 80-2

    double pitch sprockets

    2040/2042 2050/2052 2060/2062 2080/2082

    sprockets with split taper bushings

    40-2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 120 120-2

    sprockets with QD bushings

    35 35-1 35-2 -2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 100-3

    Japan standard sprockets

    JIS stock sprockets

    140 160

    finished bore sprockets

    FB25B FB35B FB40B FB50B FB60B FB80B FB100B FB120B

    double single sprockets

    40SD 50SD 60SD 80SD 100SD

    double pitch sprockets

    speed-ratio sprockets

    C3B9N C3B10N C4B10N C4B11 C4B12 C5B10N C5B11 C5B12N C6B10N C6B11 C6B12

    idler sprockets

    35BB20H 40BB17H 40BB18H 50BB15H 50BB17H 60BB13H 60BB15H 80BB12H

    table top sprockets

    P38.1

     

    Customization process :

    1.Provide documentation: CAD, DWG, DXF, PDF,3D model ,STEP, IGS, PRT
    2.Quote: We will give you the best price within 24 hours
    3.Place an order: Confirm the cooperation details and CZPT the contract, and provide the labeling service
    4.Processing and customization: Short delivery time

    Related products:

     

    Our Factory

    If you need to customize transmission products,
    please click here to contact us!

    Chain Sprockets:

     

    Company Information:

     

     

     

     

    Standard Or Nonstandard: Standard
    Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
    Hardness: Hardened Tooth Surface
    Manufacturing Method: Cut Gear
    Toothed Portion Shape: Spur Gear
    Material: Custom Made
    Samples:
    US$ 9999/Piece
    1 Piece(Min.Order)

    |
    Request Sample

    drive sprocket

    Can drive sprockets be used in underwater or harsh environmental conditions?

    Whether drive sprockets can be used in underwater or harsh environmental conditions depends on the material and design of the sprocket, as well as the specific conditions of the application. Here are some considerations:

    • 1. Stainless Steel Sprockets: Stainless steel sprockets are highly resistant to corrosion and can be used in various harsh environments, including underwater applications. They are commonly used in marine equipment and other outdoor applications exposed to moisture and humidity.
    • 2. Coated or Plated Sprockets: Some sprockets are coated or plated with materials like zinc, nickel, or chrome to enhance their corrosion resistance. These sprockets can also be used in mildly harsh environments but may have limitations in prolonged underwater use.
    • 3. Sealed or Shielded Bearings: In some applications, especially those exposed to dust, dirt, or debris, sprockets with sealed or shielded bearings are used to protect the internal components from contamination.
    • 4. Specialized Materials: In extremely harsh environments, such as underwater mining or deep-sea operations, specialized materials with high corrosion resistance and durability may be required.

    It’s essential to consider the specific conditions of your application when selecting drive sprockets for use in underwater or harsh environments. Regular maintenance and proper lubrication are also critical to extending the lifespan of sprockets in such conditions. Additionally, consulting with experts or manufacturers with experience in supplying sprockets for similar environments can help you make the right choice for your application.

    drive sprocket

    Can drive sprockets be used in automotive and motorcycle applications?

    Yes, drive sprockets are commonly used in automotive and motorcycle applications as part of the power transmission systems. In these vehicles, drive sprockets work in conjunction with chains or belts to transfer power from the engine to the wheels, enabling the vehicle to move.

    Automotive Applications:

    In automotive applications, drive sprockets are most commonly found in internal combustion engine vehicles that use a timing chain or timing belt. The timing chain or belt connects the engine’s crankshaft to the camshaft(s), ensuring the precise opening and closing of engine valves at the right time. This synchronization is crucial for the engine’s proper operation and performance. Automotive drive sprockets are often made of durable materials like steel to withstand the high loads and stresses encountered in engines.

    Motorcycle Applications:

    In motorcycles, drive sprockets are an essential part of the chain drive system. Most motorcycles use a chain to transfer power from the engine’s output shaft to the rear wheel. The drive sprocket, located on the output shaft, meshes with the motorcycle chain, which, in turn, connects to the driven sprocket on the rear wheel. As the engine revs up, power is transmitted through the chain and drive sprocket to propel the motorcycle forward. Motorcycle drive sprockets are also commonly made of steel or other durable materials to withstand the forces involved in transmitting power to the rear wheel.

    Advantages of Drive Sprockets in Automotive and Motorcycle Applications:

  • Efficient Power Transmission: Drive sprockets efficiently transfer power from the engine to the wheels, ensuring smooth acceleration and driving performance.
  • Reliability: When properly maintained, drive sprockets are durable and can withstand the rigors of automotive and motorcycle operation.
  • Cost-Effective: Drive sprockets and chain or belt systems are generally cost-effective compared to other power transmission methods.
  • Adaptability: Drive sprockets can be easily replaced or modified to achieve different gear ratios, allowing for customization of vehicle performance.
  • Overall, drive sprockets play a crucial role in power transmission systems, making them integral components in automotive and motorcycle applications. Regular inspection, maintenance, and replacement of worn-out sprockets are essential to ensure optimal performance and safety on the road.

    drive sprocket

    Can you explain the role of drive sprockets in power transmission systems?

    In power transmission systems, drive sprockets play a crucial role in transmitting rotational motion and power from one component to another using a chain or a toothed belt. The sprocket is an essential part of the system that enables smooth and efficient power transfer between the driving and driven components. Here’s how drive sprockets function in power transmission:

    1. Power Transfer: The primary function of a drive sprocket is to transfer power from a motor or engine to the driven component, such as a conveyor belt, machinery, or equipment. When the driving sprocket rotates, it engages with the chain or belt, transmitting rotational motion and torque to the driven sprocket.

    2. Gear Ratio Adjustment: By using sprockets with different numbers of teeth, the gear ratio between the driving and driven sprockets can be adjusted. Changing the gear ratio allows the system to achieve different speeds and torques, catering to specific application requirements. This gear ratio adjustment is crucial in ensuring that the driven component operates at the desired speed and efficiency.

    3. Speed Conversion: Drive sprockets facilitate the conversion of rotational speed between the driving and driven components. For example, a small driving sprocket rotating at high speed can drive a larger driven sprocket, resulting in a lower rotational speed but higher torque at the driven component.

    4. Directional Changes: In some power transmission systems, multiple sprockets and chains can be used to change the direction of rotational motion. This is particularly useful in complex machinery where different components need to rotate in different directions or perform specific tasks.

    5. Tension and Slack Control: Drive sprockets, along with idler sprockets, help in controlling the tension and slack in the chain or belt. Proper tension is essential for the smooth and efficient operation of the power transmission system. Idler sprockets are often used to maintain tension and prevent the chain or belt from becoming loose.

    6. Noise and Vibration Reduction: Well-maintained and properly aligned drive sprockets contribute to reducing noise and vibration in the power transmission system. This enhances the overall efficiency and minimizes wear on the components.

    Overall, drive sprockets are fundamental components in power transmission systems that enable the controlled transfer of mechanical power from the source to the application. Their design, size, and placement play a critical role in determining the system’s performance, efficiency, and reliability.

    China manufacturer Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket  China manufacturer Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket
    editor by CX 2023-07-28