Tag Archives: conveyor roller chain manufacturer

China manufacturer Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket

Product Description

Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket

Standard sprockets:

European standard sprockets

DIN stock bore sprockets & plateheels

03B-1 04B-1 05B-1-2 06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3
28B-1-2-3 32B-1-2-3

03A-1 04A-1 05A-1-2 06A-1-2-3 081A-1 083A-1/084A-1 085A-1 086A-1 08A-1-2-3 10A-1-2-3 12A-1-2-3 16A-1-2-3 20A-1-2-3 24A-1-2-3
28A-1-2-3 32A-1-2-3

DIN finished bore sprockets

06B-1 08B-1 10B-1 12B-1 16B-1 20B-1

stainless steel sprockets

06B-1 08B-1 10B-1 12B-1 16B-1

taper bore sprockets

3/8″×7/32″ 1/2″×5/16″ 5/8″×3/8″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

cast iron sprockets

06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3

platewheels for conveyor chain

20×16mm 30×17.02mm P50 P75 P100

table top wheels

P38.1

idler sprockets with ball bearing

8×1/8″ 3/8″×7/32″ 1/2″×1/8″ 1/2″×3/16″ 1/2″×5/16″ 5/8″×3/8″ 5/8″×3/8″ 5/8″×3/8″ 3/4″×7/16″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

double simplex sprockets

06B-1 08B-1 10B-1 12B-1 16B-1

American standard sprockets

ASA stock bore sprockets

-2 35-3 -2 40-3 50 50-2-50-3 60 60-2 60-3 80-80-2 80-3 100 100-2 100-3 120 120-2 120-3 140 140-2 160 160-2 180 200
200-2 240

finished bore sprockets

stainless steel sprockets

60

double single sprockets&single type Csprockets

taper bore sprockets

35 35-2 -2 50 50-2 60 60-2 80 80-2

double pitch sprockets

2040/2042 2050/2052 2060/2062 2080/2082

sprockets with split taper bushings

40-2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 120 120-2

sprockets with QD bushings

35 35-1 35-2 -2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 100-3

Japan standard sprockets

JIS stock sprockets

140 160

finished bore sprockets

FB25B FB35B FB40B FB50B FB60B FB80B FB100B FB120B

double single sprockets

40SD 50SD 60SD 80SD 100SD

double pitch sprockets

speed-ratio sprockets

C3B9N C3B10N C4B10N C4B11 C4B12 C5B10N C5B11 C5B12N C6B10N C6B11 C6B12

idler sprockets

35BB20H 40BB17H 40BB18H 50BB15H 50BB17H 60BB13H 60BB15H 80BB12H

table top sprockets

P38.1

 

Customization process :

1.Provide documentation: CAD, DWG, DXF, PDF,3D model ,STEP, IGS, PRT
2.Quote: We will give you the best price within 24 hours
3.Place an order: Confirm the cooperation details and CZPT the contract, and provide the labeling service
4.Processing and customization: Short delivery time

Related products:

 

Our Factory

If you need to customize transmission products,
please click here to contact us!

Chain Sprockets:

 

Company Information:

 

 

 

 

Standard Or Nonstandard: Standard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Manufacturing Method: Cut Gear
Toothed Portion Shape: Spur Gear
Material: Custom Made
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

drive sprocket

Can drive sprockets be used in underwater or harsh environmental conditions?

Whether drive sprockets can be used in underwater or harsh environmental conditions depends on the material and design of the sprocket, as well as the specific conditions of the application. Here are some considerations:

  • 1. Stainless Steel Sprockets: Stainless steel sprockets are highly resistant to corrosion and can be used in various harsh environments, including underwater applications. They are commonly used in marine equipment and other outdoor applications exposed to moisture and humidity.
  • 2. Coated or Plated Sprockets: Some sprockets are coated or plated with materials like zinc, nickel, or chrome to enhance their corrosion resistance. These sprockets can also be used in mildly harsh environments but may have limitations in prolonged underwater use.
  • 3. Sealed or Shielded Bearings: In some applications, especially those exposed to dust, dirt, or debris, sprockets with sealed or shielded bearings are used to protect the internal components from contamination.
  • 4. Specialized Materials: In extremely harsh environments, such as underwater mining or deep-sea operations, specialized materials with high corrosion resistance and durability may be required.

It’s essential to consider the specific conditions of your application when selecting drive sprockets for use in underwater or harsh environments. Regular maintenance and proper lubrication are also critical to extending the lifespan of sprockets in such conditions. Additionally, consulting with experts or manufacturers with experience in supplying sprockets for similar environments can help you make the right choice for your application.

drive sprocket

How do I calculate the gear ratio for a drive sprocket and chain setup?

Calculating the gear ratio for a drive sprocket and chain setup involves understanding the relationship between the number of teeth on the sprockets in the system. The gear ratio is a crucial factor that determines the speed and torque output of the system. Here’s how you can calculate the gear ratio:

  1. Count the Teeth: Begin by counting the number of teeth on both the driving sprocket (connected to the power source) and the driven sprocket (connected to the load).
  2. Divide the Number of Teeth: Divide the number of teeth on the driven sprocket by the number of teeth on the driving sprocket.

The formula for calculating the gear ratio (GR) can be expressed as:

GR = Number of Teeth on Driven Sprocket / Number of Teeth on Driving Sprocket

For example, if the driven sprocket has 20 teeth and the driving sprocket has 10 teeth, the gear ratio would be:

GR = 20 / 10 = 2

In this case, the gear ratio is 2, which means that the driven sprocket will rotate twice for every single rotation of the driving sprocket. Gear ratio values greater than 1 indicate that the driven sprocket rotates at a higher speed than the driving sprocket, providing an increase in speed with a corresponding decrease in torque. Conversely, gear ratio values less than 1 indicate a reduction in speed and an increase in torque.

It’s essential to consider the gear ratio carefully when designing a drive sprocket and chain setup for specific applications. The gear ratio determines the mechanical advantage of the system, affecting its overall performance, speed, and torque output. By selecting the appropriate sprocket sizes and gear ratio, you can optimize the efficiency and functionality of the power transmission system for your particular machinery or equipment.

drive sprocket

Can I upgrade my drive sprockets to improve the efficiency and performance of my machinery?

Yes, upgrading your drive sprockets can significantly improve the efficiency and performance of your machinery. Drive sprockets play a crucial role in power transmission systems, and using advanced or specialized sprockets can lead to several benefits:

  • Enhanced Durability: Upgraded sprockets are often made from high-quality materials and advanced manufacturing processes, providing greater resistance to wear, fatigue, and corrosion. This increased durability can extend the sprockets’ lifespan and reduce the frequency of replacements, resulting in cost savings.
  • Improved Efficiency: Modern sprockets are designed with precision and often feature optimized tooth profiles. Upgrading to sprockets with improved tooth profiles can reduce friction, noise, and power losses during power transmission, leading to enhanced overall system efficiency.
  • Higher Load-Carrying Capacity: Some upgraded sprockets are engineered to handle higher loads and stresses, making them suitable for heavy-duty applications and improving the machinery’s capacity to handle more significant loads.
  • Customized Solutions: Manufacturers may offer customizable sprockets tailored to specific applications. Customization options can include different tooth counts, pitches, or even specialized coatings or surface treatments to meet the unique requirements of your machinery.
  • Compatibility with Advanced Chains: Upgraded sprockets are often designed to work seamlessly with modern, high-performance chains. Pairing these sprockets with advanced chains can further optimize the power transmission system’s performance and reliability.

When considering sprocket upgrades, it is essential to consult with knowledgeable suppliers or engineers familiar with power transmission systems. They can provide valuable insights into the best sprocket options for your specific machinery and operating conditions.

Remember that upgrading the drive sprockets alone might not yield the desired improvements if other components in the power transmission system, such as chains and bearings, are worn or outdated. Therefore, a comprehensive evaluation of the entire system is recommended to achieve the best results.

China manufacturer Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket  China manufacturer Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket
editor by CX 2023-10-09

China manufacturer Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket

Product Description

Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket

Standard sprockets:

European standard sprockets

DIN stock bore sprockets & plateheels

03B-1 04B-1 05B-1-2 06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3
28B-1-2-3 32B-1-2-3

03A-1 04A-1 05A-1-2 06A-1-2-3 081A-1 083A-1/084A-1 085A-1 086A-1 08A-1-2-3 10A-1-2-3 12A-1-2-3 16A-1-2-3 20A-1-2-3 24A-1-2-3
28A-1-2-3 32A-1-2-3

DIN finished bore sprockets

06B-1 08B-1 10B-1 12B-1 16B-1 20B-1

stainless steel sprockets

06B-1 08B-1 10B-1 12B-1 16B-1

taper bore sprockets

3/8″×7/32″ 1/2″×5/16″ 5/8″×3/8″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

cast iron sprockets

06B-1-2-3 081B-1 083B-1/084B-1 085B-1 086B-1 08B-1-2-3 10B-1-2-3 12B-1-2-3 16B-1-2-3 20B-1-2-3 24B-1-2-3

platewheels for conveyor chain

20×16mm 30×17.02mm P50 P75 P100

table top wheels

P38.1

idler sprockets with ball bearing

8×1/8″ 3/8″×7/32″ 1/2″×1/8″ 1/2″×3/16″ 1/2″×5/16″ 5/8″×3/8″ 5/8″×3/8″ 5/8″×3/8″ 3/4″×7/16″ 3/4″×7/16″ 1″×17.02mm 1 1/4″×3/4″

double simplex sprockets

06B-1 08B-1 10B-1 12B-1 16B-1

American standard sprockets

ASA stock bore sprockets

-2 35-3 -2 40-3 50 50-2-50-3 60 60-2 60-3 80-80-2 80-3 100 100-2 100-3 120 120-2 120-3 140 140-2 160 160-2 180 200
200-2 240

finished bore sprockets

stainless steel sprockets

60

double single sprockets&single type Csprockets

taper bore sprockets

35 35-2 -2 50 50-2 60 60-2 80 80-2

double pitch sprockets

2040/2042 2050/2052 2060/2062 2080/2082

sprockets with split taper bushings

40-2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 120 120-2

sprockets with QD bushings

35 35-1 35-2 -2 40-3 50 50-2 50-3 60 60-2 60-3 80 80-2 80-3 100 100-2 100-3

Japan standard sprockets

JIS stock sprockets

140 160

finished bore sprockets

FB25B FB35B FB40B FB50B FB60B FB80B FB100B FB120B

double single sprockets

40SD 50SD 60SD 80SD 100SD

double pitch sprockets

speed-ratio sprockets

C3B9N C3B10N C4B10N C4B11 C4B12 C5B10N C5B11 C5B12N C6B10N C6B11 C6B12

idler sprockets

35BB20H 40BB17H 40BB18H 50BB15H 50BB17H 60BB13H 60BB15H 80BB12H

table top sprockets

P38.1

 

Customization process :

1.Provide documentation: CAD, DWG, DXF, PDF,3D model ,STEP, IGS, PRT
2.Quote: We will give you the best price within 24 hours
3.Place an order: Confirm the cooperation details and CZPT the contract, and provide the labeling service
4.Processing and customization: Short delivery time

Related products:

 

Our Factory

If you need to customize transmission products,
please click here to contact us!

Chain Sprockets:

 

Company Information:

 

 

 

 

Standard Or Nonstandard: Standard
Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Agricultural Machinery, Car
Hardness: Hardened Tooth Surface
Manufacturing Method: Cut Gear
Toothed Portion Shape: Spur Gear
Material: Custom Made
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

drive sprocket

Can drive sprockets be used in underwater or harsh environmental conditions?

Whether drive sprockets can be used in underwater or harsh environmental conditions depends on the material and design of the sprocket, as well as the specific conditions of the application. Here are some considerations:

  • 1. Stainless Steel Sprockets: Stainless steel sprockets are highly resistant to corrosion and can be used in various harsh environments, including underwater applications. They are commonly used in marine equipment and other outdoor applications exposed to moisture and humidity.
  • 2. Coated or Plated Sprockets: Some sprockets are coated or plated with materials like zinc, nickel, or chrome to enhance their corrosion resistance. These sprockets can also be used in mildly harsh environments but may have limitations in prolonged underwater use.
  • 3. Sealed or Shielded Bearings: In some applications, especially those exposed to dust, dirt, or debris, sprockets with sealed or shielded bearings are used to protect the internal components from contamination.
  • 4. Specialized Materials: In extremely harsh environments, such as underwater mining or deep-sea operations, specialized materials with high corrosion resistance and durability may be required.

It’s essential to consider the specific conditions of your application when selecting drive sprockets for use in underwater or harsh environments. Regular maintenance and proper lubrication are also critical to extending the lifespan of sprockets in such conditions. Additionally, consulting with experts or manufacturers with experience in supplying sprockets for similar environments can help you make the right choice for your application.

drive sprocket

Can drive sprockets be used in automotive and motorcycle applications?

Yes, drive sprockets are commonly used in automotive and motorcycle applications as part of the power transmission systems. In these vehicles, drive sprockets work in conjunction with chains or belts to transfer power from the engine to the wheels, enabling the vehicle to move.

Automotive Applications:

In automotive applications, drive sprockets are most commonly found in internal combustion engine vehicles that use a timing chain or timing belt. The timing chain or belt connects the engine’s crankshaft to the camshaft(s), ensuring the precise opening and closing of engine valves at the right time. This synchronization is crucial for the engine’s proper operation and performance. Automotive drive sprockets are often made of durable materials like steel to withstand the high loads and stresses encountered in engines.

Motorcycle Applications:

In motorcycles, drive sprockets are an essential part of the chain drive system. Most motorcycles use a chain to transfer power from the engine’s output shaft to the rear wheel. The drive sprocket, located on the output shaft, meshes with the motorcycle chain, which, in turn, connects to the driven sprocket on the rear wheel. As the engine revs up, power is transmitted through the chain and drive sprocket to propel the motorcycle forward. Motorcycle drive sprockets are also commonly made of steel or other durable materials to withstand the forces involved in transmitting power to the rear wheel.

Advantages of Drive Sprockets in Automotive and Motorcycle Applications:

  • Efficient Power Transmission: Drive sprockets efficiently transfer power from the engine to the wheels, ensuring smooth acceleration and driving performance.
  • Reliability: When properly maintained, drive sprockets are durable and can withstand the rigors of automotive and motorcycle operation.
  • Cost-Effective: Drive sprockets and chain or belt systems are generally cost-effective compared to other power transmission methods.
  • Adaptability: Drive sprockets can be easily replaced or modified to achieve different gear ratios, allowing for customization of vehicle performance.
  • Overall, drive sprockets play a crucial role in power transmission systems, making them integral components in automotive and motorcycle applications. Regular inspection, maintenance, and replacement of worn-out sprockets are essential to ensure optimal performance and safety on the road.

    drive sprocket

    Can you explain the role of drive sprockets in power transmission systems?

    In power transmission systems, drive sprockets play a crucial role in transmitting rotational motion and power from one component to another using a chain or a toothed belt. The sprocket is an essential part of the system that enables smooth and efficient power transfer between the driving and driven components. Here’s how drive sprockets function in power transmission:

    1. Power Transfer: The primary function of a drive sprocket is to transfer power from a motor or engine to the driven component, such as a conveyor belt, machinery, or equipment. When the driving sprocket rotates, it engages with the chain or belt, transmitting rotational motion and torque to the driven sprocket.

    2. Gear Ratio Adjustment: By using sprockets with different numbers of teeth, the gear ratio between the driving and driven sprockets can be adjusted. Changing the gear ratio allows the system to achieve different speeds and torques, catering to specific application requirements. This gear ratio adjustment is crucial in ensuring that the driven component operates at the desired speed and efficiency.

    3. Speed Conversion: Drive sprockets facilitate the conversion of rotational speed between the driving and driven components. For example, a small driving sprocket rotating at high speed can drive a larger driven sprocket, resulting in a lower rotational speed but higher torque at the driven component.

    4. Directional Changes: In some power transmission systems, multiple sprockets and chains can be used to change the direction of rotational motion. This is particularly useful in complex machinery where different components need to rotate in different directions or perform specific tasks.

    5. Tension and Slack Control: Drive sprockets, along with idler sprockets, help in controlling the tension and slack in the chain or belt. Proper tension is essential for the smooth and efficient operation of the power transmission system. Idler sprockets are often used to maintain tension and prevent the chain or belt from becoming loose.

    6. Noise and Vibration Reduction: Well-maintained and properly aligned drive sprockets contribute to reducing noise and vibration in the power transmission system. This enhances the overall efficiency and minimizes wear on the components.

    Overall, drive sprockets are fundamental components in power transmission systems that enable the controlled transfer of mechanical power from the source to the application. Their design, size, and placement play a critical role in determining the system’s performance, efficiency, and reliability.

    China manufacturer Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket  China manufacturer Welded Metric Roller Drive Conveyor Chain CZPT Plastic Stainless Steel Duplex Cast Iron Plate Flat Top Finished Bore Idler Bushed Taper Lock Qd Sprocket
    editor by CX 2023-07-28

    China Standard Chain Conveyor Transmission Parts Stainless Steel Idler Taper Transmission Drive Gear Wheel Roller Chain Sprockets manufacturer

    Product Description

    SPROCKET  5/8” X 3/8”  10B SERIES SPROCKETS
     

    For Chain Acc.to DIN8187 ISO/R 606
    Tooth Radius  r3 16.0mm
    Radius Width C 1.6mm
    Tooth Width b1 9.0mm
    Tooth Width B1 9.1mm
    Tooth Width B2 25.5mm
    Tooth Width B3 42.1mm
    10B SERIES ROLLER CHAINS  
    Pitch 15.875 mm
    Internal Width 9.65 mm
    Roller Diameter 10.16 mm

     

     

    Z de dp SIMPLEX DUPLEX TRIPLEX
    dm D1 A dm D2 A dm D3 A
    8 47.0 41.48 25 10 25 25 12 40 25 12 55
    9 52.6 46.42 30 10 25 30 12 40 30 12 55
    10 57.5 51.37 35 10 25 35 12 40 35 12 55
    11 63.0 56.34 37 12 30 39 14 40 39 16 55
    12 68.0 61.34 42 12 30 44 14 40 44 16 55
    13 73.0 66.32 47 12 30 49 14 40 49 16 55
    14 78.0 71.34 52 12 30 54 14 40 54 16 55
    15 83.0 76.36 57 12 30 59 14 40 59 16 55
    16 88.0 81.37 60 12 30 64 16 45 64 16 60
    17 93.0 86.39 60 12 30 69 16 45 69 16 60
    18 98.3 91.42 70 14 30 74 16 45 74 16 60
    19 103.3 96.45 70 14 30 79 16 45 79 16 60
    20 108.4 101.49 75 14 30 84 16 45 84 16 60
    21 113.4 106.52 75 16 30 85 16 45 85 20 60
    22 118.0 111.55 80 16 30 90 16 45 90 20 60
    23 123.5 116.58 80 16 30 95 16 45 95 20 60
    24 128.3 121.62 80 16 30 100 16 45 100 20 60
    25 134.0 126.66 80 16 30 105 16 45 105 20 60
    26 139.0 131.70 85 20 35 110 20 45 110 20 60
    27 144.0 136.75 85 20 35 110 20 45 110 20 60
    28 148.7 141.78 90 20 35 115 20 45 115 20 60
    29 153.8 146.83 90 20 35 115 20 45 115 20 60
    30 158.8 151.87 90 20 35 120 20 45 120 20 60
    31 163.9 156.92 95 20 35 120 20 45 120 20 60
    32 168.9 161.95 95 20 35 120 20 45 120 20 60
    33 174.5 167.00 95 20 35 120 20 45 120 20 60
    34 179.0 172.05 95 20 35 120 20 45 120 20 60
    35 184.1 177.10 95 20 35 120 20 45 120 20 60
    36 189.1 182.15 100 20 35 120 20 45 120 25 60
    37 194.2 187.20 100 20 35 120 20 45 120 25 60
    38 199.2 192.24 100 20 35 120 20 45 120 25 60
    39 204.2 197.29 100 20 35 120 20 45 120 25 60
    40 209.3 202.34 100 20 35 120 20 45 120 25 60
    41 214.8 207.38 *100 20 40 120 20 50 *130 25 60
    42 2,199 212.43 *100 20 40 120 20 50 *130 25 60
    43 224.9 217.48 *100 20 40 120 20 50 *130 25 60
    44 230.0 222.53 *100 20 40 120 20 50 *130 25 60
    45 235.0 227.58 *100 20 40 *120 20 50 *130 25 60
    46 240.1 232.63 *100 20 40 *120 20 50 *130 25 60
    47 245.1 237.68 *100 20 40 *120 20 50 *130 25 60
    48 250.2 242.73 *100 20 40 *120 20 50 *130 25 60
    49 255.2 247.78 *100 20 40 *120 20 50 *130 25 60
    50 260.3 252.82 *100 20 40 *120 20 50 *130 25 60
    51 265.3 257.87 *100 20 40 *120 20 50 *130 25 60
    52 270.4 262.92 *100 20 40 *120 20 50 *130 25 60
    53 275.4 267.97 *100 20 40 *120 20 50 *130 25 60
    54 280.5 273.03 *100 20 40 *120 20 50 *130 25 60
    55 285.5 278.08 *100 20 40 *120 20 50 *130 25 60
    56 290.6 283.13 *100 20 40 *120 20 50 *130 25 60
    57 296.0 288.18 *100 20 40 *120 20 50 *130 25 60
    58 300.7 293.23 *100 20 43 *120 20 57 *130 25 64
    59 305.7 298.28 *100 20 43 *120 20 57 *130 25 64
    60 310.8 303.33 *100 20 43 *120 20 57 *130 25 64
    62 321.4 313.43 *100 20 43 *120 20 57 *130 25 64
    64 331.5 323.53 *100 20 43 *120 20 57 *130 25 67
    65 336.5 328.58 *100 20 43 *120 20 57 *130 25 67
    66 341.6 333.64 *100 20 43 *120 20 57 *130 25 67
    68 351.7 343.74 *100 20 43 *120 20 57 *130 25 67
    70 361.8 353.84 *100 20 43 *120 20 57 *130 25 67
    72 371.9 363.94 *100 20 43 *120 20 57 *130 25 67
    75 387.1 379.10 *100 20 43 *120 20 57 *130 25 67
    76 392.1 384.15 *100 20 43 *120 20 57 *130 25 67
    78 402.2 394.25 *100 20 43 *120 20 57 *130 25 67
    80 412.3 404.36 *100 20 43 *130 20 57 *130 25 67
    85 437.6 429.62 *100 20 50 *130 20 58 *130 25 67
    90 462.8 454.88 *100 20 50 *130 20 58 *130 25 67
    95 488.5 480.14 *100 20 50 *130 20 58 *130 25 67
    100 513.4 505.40 *100 20 50 *130 20 58 *130 25 67
    110 563.9 555.92 *100 20 50 *130 20 58 *130 25 67
    114 584.1 576.13 *100 20 50 *130 20 58 *130 25 67
    120 614.4 606.45 *100 20 50 *130 20 58 *130 25 67
    125 639.7 631.51 *100 20 50 *130 20 58 *130 25 67

    Notice: *welding hub

    BASIC INFO.
     

    Product name  DIN ISO Standard Sprocket for Roller Chain
    Materials Available  1. Stainless Steel: SS304, SS316, etc
    2. Alloy Steel: C45, 45Mn, 42CrMo, 20CrMo, etc
    3. OEM according to your request
    Surface Treatment Heat treatment, Quenching treatment, High frequency normalizing treatment, Polishing, Electrophoresis paint processing, Anodic oxidation treatment, etc
    Characteristic Fire Resistant, Oil Resistant, Heat Resistant, CZPT resistance, Oxidative resistance, Corrosion resistance, etc
    Design criterion ISO DIN ANSI & Customer Drawings
    Size Customer Drawings & ISO standard 
    Application Industrial transmission equipment
    Package Wooden Case / Container and pallet, or made-to-order
    Certificate ISO9001: 2008 
    Advantage Quality first, Service first, Competitive price, Fast delivery
    Delivery Time 20 days for samples. 45 days for official order.

    INSTALLATION AND USING

    The chain  spoket, as a drive or deflection for chains, has pockets to hold the chain links with a D-profile cross section with flat side surfaces  parallel to the centre plane of the chain links, and outer surfaces at right angles to the chain link centre plane. The chain links are pressed firmly against the outer surfaces and each of the side surfaces by the angled laying surfaces at the base of the pockets, and also the support surfaces of the wheel body together with the end sides of the webs formed by the leading and trailing walls of the pocket.

    NOTICE

    When fitting new chainwheels it is very important that a new chain is fitted at the same time, and vice versa. Using an old chain with new sprockets, or a new chain with old sprockets will cause rapid wear.

    It is important if you are installing the chainwheels yourself to have the factory service manual specific to your model. Our chainwheels are made to be a direct replacement for your OEM chainwheels and as such, the installation should be performed according to your models service manual.

    During use a chain will stretch (i.e. the pins will wear causing extension of the chain). Using a chain which has been stretched more than the above maximum allowance causes the chain to ride up the teeth of the sprocket. This causes damage to the tips of the chainwheels teeth, as the force transmitted by the chain is transmitted entirely through the top of the tooth, rather than the whole tooth. This results in severe wearing of the chainwheel.
     

    FOR CHAIN STHangZhouRDS

    Standards organizations (such as ANSI and ISO) maintain standards for design, dimensions, and interchangeability of transmission chains. For example, the following Table shows data from ANSI standard B29.1-2011 (Precision Power Transmission Roller Chains, Attachments, and Sprockets) developed by the American Society of Mechanical Engineers (ASME). See the references[8][9][10] for additional information.

    ASME/ANSI B29.1-2011 Roller Chain Standard SizesSizePitchMaximum Roller DiameterMinimum Ultimate Tensile StrengthMeasuring Load25

    ASME/ANSI B29.1-2011 Roller Chain Standard Sizes
    Size Pitch Maximum Roller Diameter Minimum Ultimate Tensile Strength Measuring Load
    25 0.250 in (6.35 mm) 0.130 in (3.30 mm) 780 lb (350 kg) 18 lb (8.2 kg)
    35 0.375 in (9.53 mm) 0.200 in (5.08 mm) 1,760 lb (800 kg) 18 lb (8.2 kg)
    41 0.500 in (12.70 mm) 0.306 in (7.77 mm) 1,500 lb (680 kg) 18 lb (8.2 kg)
    40 0.500 in (12.70 mm) 0.312 in (7.92 mm) 3,125 lb (1,417 kg) 31 lb (14 kg)
    50 0.625 in (15.88 mm) 0.400 in (10.16 mm) 4,880 lb (2,210 kg) 49 lb (22 kg)
    60 0.750 in (19.05 mm) 0.469 in (11.91 mm) 7,030 lb (3,190 kg) 70 lb (32 kg)
    80 1.000 in (25.40 mm) 0.625 in (15.88 mm) 12,500 lb (5,700 kg) 125 lb (57 kg)
    100 1.250 in (31.75 mm) 0.750 in (19.05 mm) 19,531 lb (8,859 kg) 195 lb (88 kg)
    120 1.500 in (38.10 mm) 0.875 in (22.23 mm) 28,125 lb (12,757 kg) 281 lb (127 kg)
    140 1.750 in (44.45 mm) 1.000 in (25.40 mm) 38,280 lb (17,360 kg) 383 lb (174 kg)
    160 2.000 in (50.80 mm) 1.125 in (28.58 mm) 50,000 lb (23,000 kg) 500 lb (230 kg)
    180 2.250 in (57.15 mm) 1.460 in (37.08 mm) 63,280 lb (28,700 kg) 633 lb (287 kg)
    200 2.500 in (63.50 mm) 1.562 in (39.67 mm) 78,175 lb (35,460 kg) 781 lb (354 kg)
    240 3.000 in (76.20 mm) 1.875 in (47.63 mm) 112,500 lb (51,000 kg) 1,000 lb (450 kg

    For mnemonic purposes, below is another presentation of key dimensions from the same standard, expressed in fractions of an inch (which was part of the thinking behind the choice of preferred numbers in the ANSI standard):

    Pitch (inches) Pitch expressed
    in eighths
    ANSI standard
    chain number
    Width (inches)
    14 28 25 18
    38 38 35 316
    12 48 41 14
    12 48 40 516
    58 58 50 38
    34 68 60 12
    1 88 80 58

    Notes:
    1. The pitch is the distance between roller centers. The width is the distance between the link plates (i.e. slightly more than the roller width to allow for clearance).
    2. The right-hand digit of the standard denotes 0 = normal chain, 1 = lightweight chain, 5 = rollerless bushing chain.
    3. The left-hand digit denotes the number of eighths of an inch that make up the pitch.
    4. An “H” following the standard number denotes heavyweight chain. A hyphenated number following the standard number denotes double-strand (2), triple-strand (3), and so on. Thus 60H-3 denotes number 60 heavyweight triple-strand chain.
     A typical bicycle chain (for derailleur gears) uses narrow 1⁄2-inch-pitch chain. The width of the chain is variable, and does not affect the load capacity. The more sprockets at the rear wheel (historically 3-6, nowadays 7-12 sprockets), the narrower the chain. Chains are sold according to the number of speeds they are designed to work with, for example, “10 speed chain”. Hub gear or single speed bicycles use 1/2″ x 1/8″ chains, where 1/8″ refers to the maximum thickness of a sprocket that can be used with the chain.

    Typically chains with parallel shaped links have an even number of links, with each narrow link followed by a broad one. Chains built up with a uniform type of link, narrow at 1 and broad at the other end, can be made with an odd number of links, which can be an advantage to adapt to a special chainwheel-distance; on the other side such a chain tends to be not so strong.

    Roller chains made using ISO standard are sometimes called as isochains.

     

    WHY CHOOSE US 

    1. Reliable Quality Assurance System
    2. Cutting-Edge Computer-Controlled CNC Machines
    3. Bespoke Solutions from Highly Experienced Specialists
    4. Customization and OEM Available for Specific Application
    5. Extensive Inventory of Spare Parts and Accessories
    6. Well-Developed CZPT Marketing Network
    7. Efficient After-Sale Service System

     

    The 219 sets of advanced automatic production equipment provide guarantees for high product quality. The 167 engineers and technicians with senior professional titles can design and develop products to meet the exact demands of customers, and OEM customizations are also available with us. Our sound global service network can provide customers with timely after-sales technical services.

    We are not just a manufacturer and supplier, but also an industry consultant. We work pro-actively with you to offer expert advice and product recommendations in order to end up with a most cost effective product available for your specific application. The clients we serve CZPT range from end users to distributors and OEMs. Our OEM replacements can be substituted wherever necessary and suitable for both repair and new assemblies.

     

     

    Standard Or Nonstandard: Nonstandard, Standard
    Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Toy, Agricultural Machinery, Car, Motor, Electric Cars, Motorcycle, Machinery,
    Hardness: Hardened Tooth Surface
    Manufacturing Method: Cut Gear, Rolling Gear
    Toothed Portion Shape: Spur Gear
    Material: Alloy Steel, 1045, Stainless Steel, Q235, Brass,
    Samples:
    US$ 0/Piece
    1 Piece(Min.Order)

    |
    Request Sample

    Customization:
    Available

    |

    Customized Request

    sprocket

    Sprocket Basics

    When it comes to sprockets, it’s important to understand the basics of design. This includes chain size and number of teeth. The number of teeth will vary depending on the type of chain and application. When determining the number of teeth, the angle between the teeth should be at least 360 degrees.

    size

    There are many factors to consider when choosing the correct sprocket size. The first thing to do is to determine if the sprocket is a double sprocket or a single sprocket. Also available in a variety of sizes. To determine the exact size, you should measure the distance between the grooves of the sprocket teeth and their opposite tooth slots. The distance between these two points is called the caliper diameter.
    The size of the sprockets also varies depending on the type of chain. Large sprockets have arms, while smaller sprockets usually don’t. The arms reduce weight and inertia, making them more economical to operate. Some sprockets also have openings, which make them easier to assemble and disassemble. Some sprockets are also plated for a stronger construction. Some sprockets are manufactured with flame or induction hardened parts.
    Sprockets are often used in conveyors, pallet conveyors and other conveying systems. The size of the sprocket should match the size of the chain. A caliper will help you determine if the sprocket has worn teeth. Another way to identify worn sprockets is to measure their diameter.
    In addition to size, sprockets should have the correct pitch and center distance. This will help keep the roller chain taut. The chain should be clean and properly lubricated. There should be a small gap between the pin and bushing so that oil can pass through the sprocket and chain. In addition to this, the center-to-center distance between the chain and the sprocket should be at least 1.5 times the diameter of the sprocket.
    The chain should have at least 17 teeth, which is common in the industry. Having smaller spacing will reduce mechanical losses and noise. However, larger sprocket sizes are best for applications with higher workloads.

    Material

    Sprockets are mechanical parts that mesh with the chain to move the chain. It is made of metal or reinforced plastic and usually resembles a gear. It is a gear design for a specific type of chain. Most sprocket and chain systems work the same way, although they vary in material and pitch.
    There are three basic types of sprockets: single-strand, double-strand, and triple-strand. The length and number of teeth for each type are specified by various standards. For reference, the ISO-DIN standard is shown. Most sprockets are made of alloy steel and are case hardened and tempered in the tooth area. They also have a hub and a key for mounting.
    Metal sprockets can be made of steel or aluminum alloys. While steel is a more durable material, aluminum sprockets are more attractive. Steel is the best material for long rides, while aluminum sprockets are better for casual riding.
    In addition to automotive and industrial applications, sprockets are used in oil and gas, textile machinery, instrumentation and mechanical transmission. Many types of sprockets are interchangeable with each other. For added protection, they can also be galvanized to prevent rust. The main methods of galvanizing sprockets are hot-dip galvanizing and electro-galvanizing.
    Sprockets are usually made of steel or aluminum. Their design is similar to that of gears, although they are more widely spaced than their counterparts. They can also span longer distances than gears, allowing them to be used for power transmission.
    sprocket

    Function

    A chain drive is a common type of mechanical transmission in which sprockets are used to help reduce the speed of a moving object. Sprockets can have horizontal, vertical or inclined pitch and are usually used in pairs. The teeth of the sprocket mesh with the rollers on the drive chain, reducing the speed. These sprockets are usually made of metal, but can also be made of plastic or composite materials.
    The role of the sprocket is to transmit motion from the output shaft of the engine to the rear wheels. For this, the front sprocket needs to rotate at the same speed as the engine output shaft. It can be mounted either on the drive track or on the front of the vehicle. A third sprocket can be connected to the drive track. In addition, the front sprocket is used to pull the drive chain. This will help transfer power from the engine to the rear wheels, allowing the motorcycle to travel forward. The side plates of the chain also help transmit chain tension.
    The bushings are subjected to the tension applied to the chain as it passes through the sprockets thousands of times per minute. This puts pressure on the pin inside the bushing. Additionally, the pins must withstand bending and shearing forces transmitted from the plate to the bushing. The pins must also withstand impact and have high tensile strength. If the pin is worn, it will need to be replaced or repaired.
    Sprockets power the chain-driven motion system and carry heavy loads. Proper selection of sprockets can prevent damage to your equipment. To do this, you need to select the appropriate sprocket based on the type of assembly and system specification.
    sprocket

    maintain

    Sprocket maintenance is an important part of motorcycle maintenance. Failure to do so will result in frequent chain changes and additional costs. Regular maintenance of your chain will help ensure your chain will last 30,000 miles or more. By comparison, a poorly maintained chain only lasts 10,000 miles.
    Checking the sprocket is very easy. First, remove the chain and align it. Next, check for any foreign objects. If you see a damaged sprocket, you need to replace it. If you can’t replace a worn sprocket, you can buy a new chain. However, the new chain will not last as long as the old one.
    Check for signs of rust. Rust can form on the chain due to exposure to humidity and heat. When the pins or rollers get rusted, the seals are damaged. If the pins or rollers are rusted, it’s time to replace the chain.
    Regular maintenance of the chain is important to prevent kinks and slippage. This can cause excessive wear on the sprockets and chain. If the teeth are worn, the chain will not be able to properly grip the sprocket, resulting in difficult shifting and severe vibration.
    If your chain is several years old, it is important to lubricate it every few months to prevent rust. It is also important to clean the chain thoroughly before lubricating to keep it clean and lubricated. Non-petroleum-based cleaners can help remove grit that may have built up. If you use the chain for a long time, you will need to clean it every 300-600 miles.

    China Standard Chain Conveyor Transmission Parts Stainless Steel Idler Taper Transmission Drive Gear Wheel Roller Chain Sprockets     manufacturer China Standard Chain Conveyor Transmission Parts Stainless Steel Idler Taper Transmission Drive Gear Wheel Roller Chain Sprockets     manufacturer
    editor by CX 2023-06-07